If you're seeing this message, it means we're having trouble loading external resources on our website.

Dacă sunteţi în spatele unui filtru de web, vă rugăm să vă asiguraţi că domeniile *. kastatic.org şi *. kasandbox.org sunt deblocate.

Conţinutul principal

Referință identități trigonometrice

Evidențiem ȘI înțelegem toate identitățile trigonometrice favorite

Formule cu reciprocitate și cât

\sec, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction

\csc, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, sine, left parenthesis, theta, right parenthesis, end fraction

cotangent, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, tangent, left parenthesis, theta, right parenthesis, end fraction

tangent, left parenthesis, theta, right parenthesis, equals, start fraction, sine, left parenthesis, theta, right parenthesis, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction

cotangent, left parenthesis, theta, right parenthesis, equals, start fraction, cosine, left parenthesis, theta, right parenthesis, divided by, sine, left parenthesis, theta, right parenthesis, end fraction

Teorema lui Pitagora

sine, squared, left parenthesis, theta, right parenthesis, plus, cosine, squared, left parenthesis, theta, right parenthesis, equals, 1, squared
tangent, squared, left parenthesis, theta, right parenthesis, plus, 1, squared, equals, \sec, squared, left parenthesis, theta, right parenthesis
cotangent, squared, left parenthesis, theta, right parenthesis, plus, 1, squared, equals, \csc, squared, left parenthesis, theta, right parenthesis

Formule care provin din sume, diferențe, înmulțiri și împărțiri de unghiuri

Toate acestea sunt strâns legate, dar haide să trecem prin fiecare tip.
Formule pentru suma și diferența unghiurilor
sin(θ+ϕ)=sinθcosϕ+cosθsinϕsin(θϕ)=sinθcosϕcosθsinϕcos(θ+ϕ)=cosθcosϕsinθsinϕcos(θϕ)=cosθcosϕ+sinθsinϕ\begin{aligned} \sin(\theta+\phi)&=\sin\theta\cos\phi+\cos\theta\sin\phi\\\\ \sin(\theta-\phi)&=\sin\theta\cos\phi-\cos\theta\sin\phi\\\\ \cos(\theta+\phi)&=\cos\theta\cos\phi-\sin\theta\sin\phi\\\\ \cos(\theta-\phi)&=\cos\theta\cos\phi+\sin\theta\sin\phi \end{aligned}
tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕtan(θϕ)=tanθtanϕ1+tanθtanϕ\begin{aligned} \tan(\theta+\phi)&=\dfrac{\tan\theta+\tan\phi}{1-\tan\theta\tan\phi}\\\\ \tan(\theta-\phi)&=\dfrac{\tan\theta-\tan\phi}{1+\tan\theta\tan\phi} \end{aligned}
Formule pentru unghi dublu
sine, left parenthesis, 2, theta, right parenthesis, equals, 2, sine, theta, cosine, theta
cosine, left parenthesis, 2, theta, right parenthesis, equals, 2, cosine, squared, theta, minus, 1
tangent, left parenthesis, 2, theta, right parenthesis, equals, start fraction, 2, tangent, theta, divided by, 1, minus, tangent, squared, theta, end fraction
Formule pentru jumătăți de unghi
sinθ2=±1cosθ2cosθ2=±1+cosθ2tanθ2=±1cosθ1+cosθ=1cosθsinθ=sinθ1+cosθ\begin{aligned} \sin\dfrac\theta2&=\pm\sqrt{\dfrac{1-\cos\theta}{2}}\\\\ \cos\dfrac\theta2&=\pm\sqrt{\dfrac{1+\cos\theta}{2}}\\\\ \tan\dfrac{\theta}{2}&=\pm\sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}}\\ \\ &=\dfrac{1-\cos\theta}{\sin\theta}\\ \\ &=\dfrac{\sin\theta}{1+\cos\theta}\end{aligned}

Formule pentru simetrie și periodiocitate

sine, left parenthesis, minus, theta, right parenthesis, equals, minus, sine, left parenthesis, theta, right parenthesis
cosine, left parenthesis, minus, theta, right parenthesis, equals, plus, cosine, left parenthesis, theta, right parenthesis
tangent, left parenthesis, minus, theta, right parenthesis, equals, minus, tangent, left parenthesis, theta, right parenthesis
sin(θ+2π)=sin(θ)cos(θ+2π)=cos(θ)tan(θ+π)=tan(θ)\begin{aligned} \sin(\theta+2\pi)&=\sin(\theta)\\\\ \cos(\theta+2\pi)&=\cos(\theta)\\\\ \tan(\theta+\pi)&=\tan(\theta) \end{aligned}

Formule pentru transformarea funcțiilor

sinθ=cos(π2θ)cosθ=sin(π2θ)tanθ=cot(π2θ)cotθ=tan(π2θ)secθ=csc(π2θ)cscθ=sec(π2θ)\begin{aligned} \sin\theta&= \cos\left(\dfrac{\pi}{2}-\theta\right)\\\\ \cos\theta&= \sin\left(\dfrac{\pi}{2}-\theta\right)\\\\ \tan\theta&= \cot\left(\dfrac{\pi}{2}-\theta\right)\\\\ \cot\theta&= \tan\left(\dfrac{\pi}{2}-\theta\right)\\\\ \sec\theta&= \csc\left(\dfrac{\pi}{2}-\theta\right)\\\\ \csc\theta&= \sec\left(\dfrac{\pi}{2}-\theta\right) \end{aligned}

Anexă: Toate rapoartele trigonometrice în cercul de unitate

Folosește punctul mobil pentru a vedea cum se modifică lungimea rapoartelor în funcție de unghi.